NSGI

Reliability and Asset Management

Get the Most from Your Predictive/Condition Based Maintenance

Thursday, December 2nd, 2010 | Condition Monitoirng & Predictive Maintenance | No Comments

It has been more than two decades since predictive maintenance and condition monitoring were introduced in the electric power industry.  Since then, the industry as a whole has learned a lot about equipment failures, the mechanisms that induce those failures, and how to identify impending failures.  The tools that are available today cover more than just the “big three technologies” (vibration, oil, and infrared analysis).

Yet with all that is available to us as an industry many organizations still struggle to take full advantage of condition monitoring and predictive maintenance.  Or, may because of all the information and technology that is available to us we struggle to get the full value of our programs.

Being successful at implementing Predictive/Condition Based Maintenance requires that an organization be successful in three areas: People – train and educate our plant’s staff (not just the PdM/CBM staff) to understand the importance of PdM/CBM to the success of the organization; Technologies – select the right technology for the right application and understand what the information being provided is telling us about the health of our equipment and plants; and Processes – designing and implementing PdM/CBM processes that are integral to our daily work and provide actionable information to  the work management efforts.

The Electric Power Research Institute (EPRI) identified “14 Key Elements” of successful predictive/condition based maintenance programs.  These “14 Key Elements” include:

1.    Task Technical Basis – should provide a clear understanding of what potential failure mechanisms are being “monitored for”, the impact of those failure mechanisms on the equipment and the plant, and the likely hood of their occurrence.

2.    Technology Application – should include procedures and guidelines for application.  Each technology being applied should be well understood and consistently applied.

3.    Process Flow Definition – should be well defined including all interfaces with engineering groups, work management, maintenance, and operations.

4.    Program Leadership and Coordination – should include good visibility within the organization for the PdM/CBM leadership.  That leadership should promote the use of and the benefits of PdM/CBM.

5.    Organization, Roles, and Responsibilities – should include real accountability and evidence that the responsibilities are being carried out as defined by the process.

6.    Information Management and Communications – personnel should correlate PdM/CBM data with other forms of plant information to provide a clear picture of the health of equipment.  This information should be communicated to other groups efficiently to support timely actions.

7.    Equipment Condition Assessment and Decision Making – condition data should be trended, analyzed, integrated and a report generated on anomalies for equipment owners and management to review.  It should be clear who has the responsibility for making decisions on equipment based upon its health.

8.    Training and Qualifications – the users of the information developed by PdM/CBM should have a basic understanding of the techniques.  The PdM/CBM personnel should be well trained and certified and should be participating with their pier in the industry.

9.    CBM/PdM Work Prioritization and Scheduling – data collection tasks should be well defined, prioritized and scheduled in the work management process.  The plant should ensure that data is collected consistent with the program requirements.

10. Work Closeout and Maintenance Feedback – should include documentation of as found conditions; it should be timely and be provided to the PdM/CBM organization, maintenance and the equipment owners.

11. Goals and Performance Metrics – should be part of the integrated metrics used by the plant.  They should be well developed and consistent with the overall goals of the organization.

12. Calculations of Cost-Benefits and Return on Investment – should include both a probabilistic approach to cost avoidance along with and the real budget associated with running the program.  Management should understand and support the analysis process and the values used in the analysis.

13. Internal Customer Satisfaction – internal customers should be identified and their input as to how the PdM/CBM process could be more useful to them should be solicited.

14. Continuous Improvement – industry and technologies should be reviewed on a regular basis to incorporate lessons learned and new thought process so as to make the PdM/CBM process more effective.

When looking to enhance or revitalize your PdM/CBM process create a clear definition of your ideal organization with respect to the above 14 Key Elements; once this has been complete an assessment of where your organization is performing in each of needs to be performed.  With an understanding of where your organization needs to be and where it is today, an organizational change plan can then be developed to effectively move your organization forward.

Tags: , , , ,

Leave a Reply

Copyright © 2025 NSGIWebsite design by Slamdot.